Известно, что устойчивость системы, полоса: захвата и удержания определяются коэффициентой передачи разомкнутой петли ФАПЧ.

В [2] приведены основные характеристики петли ФАПЧ второго порядка.

Полоса з'яхвата петли ФАПЧ второго порядка равна

 $\Delta \omega_3 = K_{\tau} K_{\Gamma} y_{11} (\tau_2 / \tau_1),$ 

где т1 и т2 -- постоянные времени пропорциональноинтегрирующего фильтра.

Полоса удержания

 $\Delta \omega_{\mathbf{y}\mathbf{z}} = K_{\varphi} K_{\Gamma \mathbf{y} \mathbf{H}}.$ 

Из рис. 2 видно, что в различных точках полосы частот Ктун имеет различные значения и, чтобы обеспечить приемлемые полосы захвата и удержания, требуется изменять и Кт.

Составлена программа для определения зависимости крутизны ФД от входного сигнала. Из полученных результатов следует, что крутизна ФД в пределах рабочих частот изменяется от уровия входного сигнала согласно данным программы, приведенным в таблице. Следовательно, такое из-

Результаты, полученные при машинном расчете К-

| <i>Ρ</i> <sub>Γ</sub> . Βτ | Р <sub>с</sub> , Вт | $K_{\frac{1}{2}}$ , B/pag |
|----------------------------|---------------------|---------------------------|
| 4.00000E-03                | 1.00000E-05         | .07961.73                 |
| 4.00000E-03                | 2.00000E-05         | 0997481                   |
| 4.00000E-03                | 3.00000E-05         | .122015                   |
| 4.00000E-03                | 4.00000E-05         | .140716                   |
| 4.00000E-03                | 5.00000E-05         | .157129                   |
| 4.00000E-03                | 6.00000E-05         | .171909                   |
| 4.00000E-03                | 7.00000E-05         | .18546                    |
| 4.00000E-03                | 8.00000E-05         | .198021                   |
| 4.00000E-03                | 9.00000E-05         | .209769                   |
| 4.00000E-03                | 1.00000E-04         | .220854                   |
| 4.00000E-03                | 2.00000E-04         | .308588                   |
| 4.00000E-03                | 3.00000E-04         | .373529                   |
| 4.00000E-03                | 4.00000E-04         | .426381                   |
| 4.00000E-03                | 5.00000E-04         | .471379                   |
| 4.00000E-03                | 6.00000E-04         | .510741                   |
| 4.00000E-03                | 7.00000E-04         | .545753                   |
| 4.00000E-03                | 8.00000E-04         | .577322                   |
| 4.00000E-03                | 9.00000E-04         | .606056                   |
| 4.00000E-03                | 1.00000E-03         | .632435                   |

менение К<sub>2</sub> может быть использовано для компенсации неравномерности крутизны ГУН в рабочей полосе частот. С этой целью и введен управляемый аттенюатор АТІ. По результатам той же программы при изменении мощности гетеродина на 3 дБ K<sub>2</sub> практически не изменяется.

Конструкция синтезатора частот. Конструктивно снитезатор частот состоит из двух частей. В герметичной части расположены следующие функциональные узлы: генератор, УВК, автогенератор, фазовый детектор, усилители, аттенюаторы. Эта часть

выполнена по микрополосковой технологии, каждый функциональный узел отделен от другого собственным экраном для исключения взаимного влияния.

В негерметичной части СЧ располагаются стабилизаторы напряжений, коммутаторы, плата устройства управления.

Разработан синтезатор частот для автоматизированного измерительного комплекса.

#### Параметры СВЧ

| Полоса рабочих частот, МГц                                                      |
|---------------------------------------------------------------------------------|
| Дискрет перестройки, МГц 20                                                     |
| Количество частотных точек                                                      |
| Нестабильность выходных частот за сутки не хуже<br>±5·10-8                      |
| Уровень устанавляваемой мощности на<br>каждой из чаётотных точек, мВт 5 — 60    |
| Максимальная скорость переключения ча-<br>стот в автоматическом режиме, мкс 0,5 |
| Подавление побочных составляющих в ра-                                          |
| бочем диалазоне частот, дБ не хуже —50                                          |
| Габаритные размеры, мм                                                          |
| Масса, кг менее 4,5                                                             |
| Потребляемая мощность, Вт 7                                                     |

Синтезаторы, подобные разработанному, могут быть использованы не только в схемах контроля, но также любых других радиотехнических устройствах, где требуется высокая скорость переключетия частот и чистота спектра. Дальнейшие усовершенствования СЧ могут идти по лиции мицимизации массогабаритных характеристик, уменьшения мощности потребления, улучшения электрических параметров.

## ЛИТЕРАТУРА

1. Манасевич В. Синтезаторы частот (Теория и проек-тирование): Пер. с англ./Под ред. А. С. Галина.— М.: Связь, 1979.-- 384 c.

2. Линдсей В. Системы синхронизации в связи и управлении: Пер. с англ./Под ред. Ю. Н. Бакаева, М. В. Капрано-ва.— М.: Советское радно, 1978.— 600 с.

3. Микроэлектронное устройство формирования частоты СВЧ-днапазона на основе умножителя частоты сверхвысокой кратности/В. В. Князев, В. И. Митин, И. С. Формальнов, А. С. Хечумов//Электронная техника. Сер. 10, Микроэлектронные устройства — 1986. — Вып. 4 (58). — С. 20 — 23.

Статья поступила 27 февраля 1989 г.

УДК 621.372.4

П. В. Волков, В. В. Матвеев, И. А. Соколов

# ИССЛЕДОВАНИЕ ГЕНЕРАТОРОВ, СТАБИЛИЗИРОВАННЫХ ДИСКОВЫМИ ДИЭЛЕКТРИЧЕСКИМИ РЕЗОНАТОРАМИ

Рассмотрены конструкции генераторов, стабилизированных внешними дисковыми диэлектрическими резона-торами (ГДДР). Особое внимание уделено конструкции

ГДДР, работающих при температуре 300 К. Экспериментально исследованы добротности ГДДР и спектральная плотность фазовых флуктуаций генера-торов при температурах 77 и 300 К.

ЭЛЕКТРОННАЯ ТЕХНИКА. СЕР. 10. МИКРОЭЛЕКТРОННЫЕ УСТРОИСТВА, ВЫП. 4(76). 1989 10

## Исследование генераторов, стабилизированных дисковыми диэлектрическими резонаторами

Для современных средств радиосвязи, метрологии и радиоастрономии характерно стремление к улучшению параметров используемых источников колебаний, одной из важных характеристик которых является спектральная плотность фазовых шумов  $S_{\tau}(F)$ . В решающей степени спектр  $S_{\varphi}(F)$ определяется добротностью колебательной системы генератора.

В настоящее время все большее распространение получают генераторы, стабилизированные дисковыми диэлектрическими резонаторами (ДДР). В ДДР мультипольного типа удается сочетать достаточную разряженность дискретного спектра с высокой добротностью и малыми габаритами резонансной системы.

## Конструкция генераторов

В данной работе приведены результаты исследований четырех генераторов на дисковых диэлектрических резонаторах из монокристаллического лейкосапфира. В дальнейшем эти генераторы обозначаются как: Г1— криогенный ГДДР без электронной подстройки частоты, рабочая температура T = 77 К; Г2— криогенный ГДДР (T = 77 К) с электронной подстройкой частоты; Г3—ГДДР с электронной подстройкой частоты (T = 300 К); Г4— модификация генератора Г3.

Резонаторы в генераторах Г1 и Г2 включены на «отражение», в генераторах Г3, Г4 — на «проход». Электронная подстройка частоты в генераторах Г2 и Г3 осуществлялась подачей управляющего напряжения  $U_{\rm B} = 0 - 10$  В от внешнего источника питания (ИП) на варикап VD2 типа ЗА603 (2А604), включенный в «горячую» секцию генератора. Относительная электронная перестройка составляла  $\Delta j/j_{\rm r} = \pm 10^{-7}$ .

Конструктивно генераторы Г1 и Г2 представляют собой вакуумированные криостаты с ДДР, охлажденными до температур жидкого азота 77 К, и «горячими» резонаторами на отрезках прямоугольных волноводов с гермопереходами и клинообразными диэлектрическими элементами связи.

Генераторы ГЗ и Г4 (рис. 1) выполнены невакуумированными с элементом связи рупорно-щелевого типа. Активным элементом 5 во всех генера-



Рис. 1. Конструкция генераторов ГДДР: 1-ДДР: 2-объемный резонатор: 3-регулятор связи с ДДР: 4-винт механической настройки; 5диод Ганна VD1: 6-подстроечный поршень: 7-«горячий» резонатор: 8-рупорно-щелевой элемент связи

торах служит диод Ганна (ДГ) VD1 типа 3А703 (3А705). Элементами грубой настройки в относительных пределах  $\pm 10^{-1}$  в такой конструкции служат: ножевая днафрагма, расположенная в середине «горячего» резонатора в плоскости ZOY (у генератора ГЗ); подстроечный поршень 6, плавно перемещающийся по оси Z «горячего» резонатора (у генератора Г4); винт механической настройки 4, расположенный на расстоянии ~15 мм от места включения VD1. Стандартный волновод с ножевой диафрагмой включается в зазор I между «горячим» резонатором 7 и элементом связи 8.

Выход на выбранную моду ДДР обеспечивается: регулировкой согласующей щелевой диафрагмы, представляющей собой тонкую пластинку из меди с узкой щелью, включаемую в зазор 1; согласующими элементами в объемном резонаторе; режимом «горячей» секции — винтом механической подстройки, напряжениями  $U_{\Box\Gamma}$  и  $U_B$  на диодах VD1 и VD2, соответственно. С помощью регулятора связи 7 можно изменять расстояние *n*, регулируя тем самым связь с ДДР путем подбора оптимального расстояния между элементом связи и высокодобротным резонатором.

У генераторов Г1 и Г2 грубая настройка обеспечивается винтом механической настройки, аналогичным 4 на рис. 1. Точная настройка на частоту выбранной моды ДДР осуществляется за счет изменения напряжения питания  $U_{\rm BF}$  на генераторном диоде и подбором  $U_{\rm B}$  цепи электронной подстройки.

## Настройка и измерение частоты генераторов

Поскольку система ГДДР имеет большое число независимых регулирующих элементов (число степеней свободы), необходимо пользоваться экспрессным методом последовательной настройки, обладающим хорошей сходимостью и наглядной индикацией оптимальности. Нами в качестве критерия оптимальности выбрана нагруженная добротность  $Q_{\rm H}$  «холодного» резонатора, а целевой функцией её максимум.

Многомерная поверхность функции добротности от параметров конструкции имеет максимум, который определяем, анализируя поведение Q<sub>н</sub> модуляционным методом [1]. Схема настройки и измерения частоты генераторов представлена на рис. 2.



Свидетельством того, что генерация осуществляется на моде ДДР, являются виды спектральных линий, изображенные на рис. 3. При частотах модуляции  $F_{\rm M} = 1$  кГц и напряжениях модуляции

 $U_{\rm M} = 0,3-3$  В уровень боковых составляющих пренебрежимо мал и о добротности Q<sub>н</sub> можно судить по медленно меняющейся несущей.



#### Рис. 3. Радиоспектры колебаний ГДДР:

1 ДДР: a — генератор Г1:  $f_{\Gamma} = 9599784.4$  кГц:  $U_{\Pi\Gamma} = 9.01$  В;  $P_{\Gamma} = 5 - 10$  мВт (парамет-ры AC: обзор 5 кГц/дел; полоса — 1 кГц): 6 — генератор Г2:  $f_{\Gamma} = 9602130.2$  кГц;  $U_{\Pi\Gamma} = -14.07$  В;  $U_{\rm B} = -(9 + 10)$ В;  $P_{\Gamma} =$  = 7 - 12 мВт (параметры AC те же): e - генератор Г3:  $f_{\Gamma} = 9561.97$  МГц;  $U_{\Pi\Gamma} = -9.04$  В;  $U_{\rm B} = 0.5$  В;  $P_{\Gamma} = 1 - 3$  мВт (параметры AC те же):  $D_{\Pi_{1}} = -3,64$  В, C = B = 0,5 B,  $P_{F} = 1 = -3$  мВт (параметры AC те же; параметры модуляция:  $U_{M} = 0,4$  В,  $F_{M} = 1$  к Гц)  $z = генератор Г4: f_{F} = 9397,25$  МГц;  $U_{\Pi_{1}} = -10,3$  В;  $P_{T} = 2$  мВт (параметры  $U_{\Pi} f = -10,3$  В;  $P_{T} = 2$  мВт (параметры AC и модуляции те же):  $\Delta - разностный сигнал \Delta i_{p} = 2,343$  МГц генераторов Г1 и Г2;  $U_{\Delta f_{p}} = 100$  мВ; об-зор 0.5 кГц/лел: полоса 0.3 кГц;  $\varepsilon$  — разностный сигнал  $\Delta i_{p} = 2,349$  МГц генераторов Г1 и Г2;  $U_{\Delta f_{p}} = 70$  мВ; об-зор 1 кГц/дел; полоса 1 кГц (параметры модуляции:  $U_{M} = 1$  В,  $F_{M} = 1$  кГц)

Нетрудно заметить особенности формы линий одиночных генераторов, представленных на рис. 3: характерная пилообразная асимметрия и участок с небольшим изгибом. Разрешающая способность анализаторов спектра не позволяет выяснить истинную ширину  $\Delta f_{a}$  спектральных линий, поэтому по линии невозможно сравнить генераторы на различных модах и при различных (77 и 300 К) рабочих температурах. Однако можно наблюдать наглядно влияние модуляции на окрестность несущей. Искажение верхушки линни меньше в тех случаях, когда нагруженная добротность Q<sub>н</sub> выше. Особенно это различие заметно при сравнении генераторов с разными рабочими температурами: при T = 77 К  $Q_{\rm H} = (3-30) \cdot 10^5$ ; при T = 300 К  $Q_{\rm H} = (3-30) \times$ ×105. В этом смысле лучший результат получен для генератора Г1: при оптимизации по модуляционному методу удалось наблюдать линию при максимальных уровнях калибровочной модуляции  $U_{\rm M} = 3,5$  В и частоте  $F_{\rm M} = 1$  кГц. При этом  $f_{\Gamma 1} = 9599834,6(7)$  кГц;  $P_{\Gamma 1} = 1,53$  мВт; напряжение питания  $U_{\rm R\Gamma} = -9,48$  В. Отметим для сравнения, что обычно выходная мощность Р гі при неоптимальной настройке на максимум Q<sub>н</sub> для данного генератора составляла 7-10 мВт. При оптимальной настройке реализован «мягкий» режим возбуждения с обеих сторон от рабочей моды. Экспериментально установлено, что для эффективного использования электронной подстройки предпочтительнее включать вместо варикапа VD2 днод Ганна такого же типа, что и генераторный VD1. При этом значительно улучшается согласование с «горячим» резонатором, реализуется «мягкий» режим возбуждения колебаний. ДДР из лейкосапфира имеет достаточно сильную температурно-частотную зависимость. При измерении частоты генераторов Г1 и Г2 относительная режимная нестабильность составила  $\delta f = 10^{-7}$ , у генераторов ГЗ и Г4  $\delta f =$  $=\pm 10^{-5}$ .

## Измерение нагруженной добротности ДДР в экране и добротности спектральной линии

Схема измерения нагруженной добротности Qu на «проход» диэлектрических резонаторов в экране при 300 К изображена на рис. 4, а. Добротность ДДР в экране оцениваем по формуле

$$Q_{\rm H} = -\frac{\dot{f}_{\rm P}}{\Delta f} -$$

где *f*<sub>p</sub> — частота измеряемой моды ДДР; *Δf* — ширина резонансной характеристики на уровне 3 дБ.



Рис. 4. Схемы измерения добротности Q<sub>в</sub> ДДР в экране (а) и измерения добротности Q<sub>л</sub> спектральной линии (б)

Преимущество указанного метода измерения Q<sub>н</sub> состоит в том, что он позволяет наблюдать АЧХ резонатора на экране анализатора спектра (АС) и оценивать Q<sub>н</sub> прямым методом непосредственно по резонансной характеристике. Модуляционный метод, о котором говорилось выше, является косвенным методом, менее точным. Для того чтобы успешно измерить Q<sub>н</sub> вышеуказанным методом, необходимо приблизительно знать значение частоты измеряемой моды резонатора  $f_{\rm p}.$  В этом случае удается правильно подобрать частоту синтезатора  $\pm f_c = f_r - f_p$ , чтобы точно попасть на моду  $f_p$  резонатора, что способствует повышению точности измерений.

Результаты измерения  $Q_{\rm H}$  составили (5 — 10)  $\times$ ×10<sup>5</sup> при 300 К. Разрешающая способность АС типа С4-60 позволяет гарантировать достоверность измерений  $Q_{\rm H} \leqslant 10^6$ , что связано с точностью измерения  $\Delta f$  по резонансной характеристике ДДР в экране.-

Измерение добротности спектральной линии Q<sub>л</sub> на разностной частоте  $\Delta f_p = f_2 - f_1$  проводится по схеме рис. 4, б, где f<sub>1</sub> и f<sub>2</sub> — частоты генераторов Г1 и Г2, соответственно. Такая схема позволяет наблюдать спектр колебаний на частоте  $\Delta f_p$  на экране анализатора СК4-59 и оценивать  $Q_{\pi}$  аналогично оценке  $Q_{\mu}$  в предыдущем случае, т. е. по ширине спектральной линии разностной частоты на уровне 3 дБ. При измерении  $Q_{\pi}$  предполагается  $f_1 \approx f_2 \approx f_r$ .

Измерения проводились на разностной частоте  $\Delta f_{\rm p} \sim 2.3~{\rm MFu}$ . Получены значения добротностей  $Q_{\rm n} = (10-30)\cdot 10^5$ . Конкретный результат измерений

$$Q_{.1} = \frac{9,6 \cdot 10^9}{0.5 \cdot 10^3} \simeq 19 \cdot 10^5$$

представлен на рис. 3, д.

Модулируя поочередно напряжение на ДГ  $U_{\rm AF}$ каждого из генераторов Г1 и Г2, можно оптимизировать генераторы по форме спектральной липни на разностной частоте (рис. 3, *e*).

Результаты оптимизации одиночных генераторов и генераторов на разностной частоте несколько различны, так как в последнем случае сказывается изменение нагрузки (генераторы нагружены на смеситель).

Чувствительность предлагаемых методов измерсния добротностей составила  $(2 - 3) \cdot 10^6$  для  $Q_{\rm H}$  и  $(20 - 30) \cdot 10^6$  для  $Q_{\rm J}$ , соответственно.

#### Измерение спектра фазовых шумов

Спектральная плотность фазовых флуктуацай  $S_{\varphi}(F)$  ГДДР была исследована на ИФ5901 СА. На рис. 5, а изображена схема измерения  $S_{\varphi}(F)$  одиночных генераторов, на рис. 5,  $\delta$  — схема измерения криогенных генераторов Г1 и Г2 двухканальным разностным методом. Измерения проводились при полосе ФАПЧ измерителя 20 Гц и полосе анализа  $\Delta F_A = 3$  Гц анализатора СК4-56.



Рис. 5. Схема измерения  $S_{qr}(F)$ ГДДР одиночных генераторов (a) и генераторов, разнесенных по частоте двухканальным разностным методом (б)

На рис. 6 представлены результаты измерения  $S_{\tau}$  (F). В диапазоне частот отстроек F = 50 Гц – 5 кГц  $S_{\tau}$  (F) носит ярко выраженный характер частотного фликкер-шума: скорость изменения ~30 дБ/дек. Измерения  $S_{\tau}$  (F) на отстройках F ниже 30 Гц нельзя считать достоверными, изгиб кривых  $S_{\tau}$  (F) связан, видимо, с недостаточной чувствительностью и полосой ФАПЧ измерителя, а также с взаимным влиянием измеряемых ГДДР. При измерении одиночных генераторов чувствительности измерительной стойки на

частотах анализа F свыше 1 кГц также недостаточно.

Результатом того, что генераторы при рабочей температуре ДДР 77 К имеют  $Q_{\rm H}$  примерно на порядок выше, чем генераторы при температуре ДДР 300 К, явилась разница в значения  $S_{\mp}(F)$  между генераторами Г1, Г2 и Г3, Г4, которая составила



в среднем 12—15 дБ. При многократном измерении  $S_{z}(F)$  получена хорошая воспроизводимость результатов. Разница измерений по сериям, отстоящим на несколько дней, недель, составила  $\pm 2$  дБ.

VEDIAN

#### Результаты экспериментов

Результаты исследований ГДДР показывают, что для оптимальной настройки на частоту  $j_r$  выбранной рабочей моды ДДР (критерий оптимальности — максимум  $Q_{\rm B}$ ) в конструкциях должны быть предусмотрены элементы грубой и точной настройки. Для оптимизации генераторов по максимуму  $Q_{\rm H}$  очень удобным оказался модуляционный метод, с помощью которого удается наглядно сравнить генераторы при азотных (77 K) и комнатных (300 K) температурах. Тот факт, что модуляционный метод позволяет оптимально настроиться на моду ДДР, подтвердился и при нзмерении шумовых характеристик: минимальные фазовые шумы  $S_{\rm P}$  (F) соответствовали оптимальным, т. е. максимальному  $Q_{\rm H}$ .

При измерении частоты генерируемых колебаний наблюдались долговременные уходы частоты *f*<sub>г</sub> ГДДР. Предполагаемые причины таких уходов релаксационные и сорбционные процессы материала мультипольного резонатора и несовершенство криогенной системы.

В работе предложен метод прямого измерения нагруженной добротности  $Q_{\rm H}$  ДДР в экране непосредственно по АЧХ резонатора. Результаты измерений:  $Q_{\rm B} = (5-20)\cdot 10^3$ . Лучший результат —  $2\cdot 10^6$  при T = 300 К находится на уровне разрешения предлагаемого метода. Для сравнения ука-

13

жем, что в [2] приводится результат для  $Q_{\rm H} \sim$  $\sim 2.6 \, 10^5$  при T = 300 К как рекордно высокий.

Экспериментально доказано, что при работе на азимутальных колебаниях ДДР для достижения максимальных Q<sub>и</sub> необходимо идти не только по лути оптимизации добротности тепловых потерь  $Q_{\tau}(\operatorname{tg} \delta)$ , по и по пути оптимизации радиационной добротности Q<sub>рал</sub>, которая в бо́льшей степени определяет суммарную добротность мультипольного резонатора типа ДДР. Для этого необходимо оптимизировать размеры ДДР и специального экрана с соответствующими элементами настройки.

1000

Измерена добротность спектральной линии Q<sub>л</sub> на разностной частоте  $\Delta f_p$  криогенных генераторов. Указана возможность оптимизации модуляционным методом по виду линии колебания на разностной частоте ∆ƒр.

Измерены спектральные плотности фазовых флуктуаций S, (F) ГДДР, при отстройке от несущей на 1 кГц получены следующие результаты:

 $S_{\pm}$  (1 қГц) = -125 дБ/Гц при T = 300 К;  $S_{\pm}$  (1 кГц) = -145 дБ/Гц при T = 77 К.

#### Выводы

Рассмотрены конструкции ГДДР при рабочих температурах 77 и 300 К. Предложен модуляционный метод оптимизации генераторов по максиму-My  $Q_{\rm B}$ .

Измерены добротности Q<sub>и</sub> и Q<sub>л</sub> и проведены исследования спектральной плотности фазовых шу-MOB  $S_{\pm}(F)$ .

Полученные экспериментальные результаты подтверждают перспективность использования диэлектрических резонаторов для построения эталонных высокостабильных малошумящих источников колебаний в диапазоне СВЧ.

## ЛИТЕРАТУРА

1. Волков П. В., Матвеев В. В. К оценке нагруженной добротности резонатора в высокостабильных СВЧ-генераторах, Электронная техника. Сер. 10, Микроэлектронные устройства:— 1987.— Вып. 3(63).— С. 27 — 29. 2. Панов В. И., Станков П. Р. Стабилизация частоты

генераторов высокодобротными диэлектрическими резонаторами из лейкосапфира//Радиотехника и электроника.— 1986.— T. 31, № 1.— C. 213

Статья поступила 20 февраля 1989 г.

#### УДК 621.391.23.037.3

А. П. Сахаров, А. В. Щагин, С. Д. Щипакин

# МЕТОД РАСЧЕТА КАНАЛА ПЕРЕДАЧИ ДАННЫХ

Рассмотрен метод расчета установившегося напряжения сигналов в линии передачи информации. Учитываются свойство линии, зависимость выходного напряжения источника сигналов от величниы эквивалентной нагрузки и зависимость сопротивления каждой из нагрузок от напряжения.

Основными параметрами канала передачи дан ных являются напряжение информационного си. нала на приемном входе абонента и выходное на пряжение передающего канала абонента. В работ рассматривается метод определения этих величи для канала передачи с линией связи ограниченис длины и заданным количеством абонентов.

Под линией связи ограниченной длины подразу мевается линия, нагруженная на концах на волис вое сопротивление, у которой электрическая длин не превышает длину волны высокочастотной част спектра передаваемых сигналов. Рассматриваетс случай передачи двуполярных импульсных сиги: лов длительностью  $\tau_{\rm H}=0.5-1.5\,$  мкс, длина л: нии связи  $l_0$  не превышает  $l_0\leqslant 100\,$  м. Эта оценк основана на результатах работы [1], в которе установлено, что спектр подобных сигналов в ос новном сосредоточен в диапазоне до 2 МГц.

Вычисляются установившиеся значения импулы ного напряжения сигнала на входе каждого абс нента — приёмника, т. е. считается, что перехо; ные процессы в согласованной короткой линии н оказывают влияния на амплитуду сигнала. Такс подход основан на том, что постоянная времен заряда — разряда всей линин та меньше длители пости информационного импульса ти, т. е. т<sub>λ</sub> « т R.

где 
$$\tau_{\lambda} = l_0 C_0 \frac{N c}{2}$$
;  $C_0$  – емкость одного метра к

беля; R<sub>c</sub> — согласующее сопротивление, включа мое на концах кабеля.

В нашем случае  $C_0 \simeq 75 \ \mathrm{n}\Phi/\mathrm{M}, R_\mathrm{c} = 75 \ \mathrm{Om}, \tau.$  $\tau_{\lambda}\simeq 3\cdot 10^{-8}$  с,  $\tau_{\mu}\simeq 0.5\cdot 10^{-6}$  с. Этн оценки являю ся основанием для применимости метода «по стоянного тока» к расчету данного канала перед: чи, т. е. рассчитываются только амплитуды напри жений импульсного информационного сигнала учитываются чисто активные сопротивления эл ментов канала.

Особенностью современных приемно-передан щих устройств каналов передачи, выполненных в полупроводниковых приборах, является завис: мость величины входного сопротивления абонена от уровня сигнала в линии. Наиболее сильно эт может проявиться при выключении питания выхо. ных цепей передающего каскада абонента. В это случае выходные цепи передатчика потребляк энергию из линии, т. е. дополнительно её нагруж ют. В предлагаемом методе расчета подобное я ление сводится к представлению нагрузки (выкль ченного і-го передатчика) в виде нелинейного с противления.

Как правило, абонент — источник сигнала обл дает внутренним сопротивлением, по величине с измеримым с внешней нагрузкой; для источния таковой является вся линия. В связи с этим напр жение источника сигнала Ur зависит от эквив лентного сопротивления линии R<sub>a</sub> в точке подкли чения источника. В расчете это учитывается соо нощением  $U_r = f(R_0)$ .

Расчет простейшего канала, состоящего двух — трех абонентов с пелинейными входными выходными характеристиками, возможен аналит ческим методом. Подобный расчет реального кан ла со множеством абонентов аналитическим мет

ЭЛЕКТРОННАЯ ТЕХНИКА. СЕР. 10. МИКРОЭЛЕКТРОННЫЕ УСТРОЙСТВА, ВЫП. 4(76), 1989

14